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Mid-infrared Optoacoustic Microscopy  Label-free monitoring of myeloma cells therapy
Mid-infrared Optoacoustic Microscopy (MiROM) combines the high spectral specificity
of mid-infrared excitation with the positive contrast nature of optoacoustic sensing.

b)

c)

Figure 2. Method. a) Light absorption spectral range. Mid-
infrared (Mid-IR) spectroscopy is specific for biomolecular
detection. b) Specific molecular vibrations induced by mid-
IR excitation. c) Schematic representation for MiROM. QCL:
Quantum Cascade Laser. US: Ultrasound. IR: InfraRed.

MiROM can detect misfolded proteins, rich in intermolecular β-sheet structures at
1620 cm-1, and can use this absorption band as intrinsic marker to assess myeloma
drug therapy.
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Figure 3. Monitoring protein misfolding
in myeloma cells. a) LEN/BTZ treated
myeloma cells. b) Differential spectra of
LEN/BTZ treated myeloma cells (red line)
and untreated cells (blue line). The band at
1620 cm-1 is assigned to intermolecular β-
sheet assigned to misfolded proteins. c)
Non-negative Matrix Factorization (NMF)
components extracted from spectral data in
(b). d) Violin plots showing the time
evolution coefficients of NMF component 2.
e) t-Distributed Stochastic Neighbor
Embedding (t-SNE) map representing the
distribution of the 5 components identified
in LEN/BTZ treated and untreated myeloma
cells. f) Differential spectra of BTZ treated
myeloma cells (red) show the intermolecular
β-sheet band at 1620 cm-1. g) Differential
spectra of LEN treated myeloma cells (red)
show the intermolecular β-sheet band. i)
Differential spectra of doxorubicin (DOX)
treated myeloma cells (red) do not show
the intermolecular β-sheet band. Untreated
cells in blue.

Assessment to therapy 
response in LEN/BTZ 

sensitive and resistant 
myeloma patients

MiROM assesses myeloma therapy
response at single-cells level in patients
samples.
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Figure 4. Monitoring protein misfolding
in LEN/BTZ sensitive or resistant
patients. a) LEN/BTZ treated myeloma
cells biopsied from LEN/BTZ sensitive
patient. b) Differential spectra of LEN/BTZ
treated (red) and untreated (blue) patient
myeloma cells in (a). The band at 1620
cm-1 indicate presence of misfolded
proteins. c) NMF components extracted
from spectral data in (b). d) Violin plots
showing the time evolution of NMF
component 4. e) t-SNE map representing
the distribution of the 5 NMF components.
f) Percentage response (%) of LEN/BTZ
sensitive patients’ cells analyzed from 10
independent patients. g) LEN/BTZ treated
myeloma cells biopsied from LEN/BTZ
resistant patient. h) Differential spectra of
LEN/BTZ treated (red) and untreated (blue)
patient myeloma cells in (g). i) Percentage
response of LEN/BTZ resistant patients’
cells.
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Multiple myeloma therapy efficacy is conventionally assessed by whole cell-population
methods such as Fluorescence-Activated Cell Sorting and Western Blot assays or serum
analysis and flow cytometry of bone marrow aspirates and biopsies. However, these
methods require a large number of cells, which results in limited applicability for
longitudinal evaluation of patient-specific therapeutic response. Label-free monitoring of
treatment at single-cell levels would avoid the need of using large patient cell populations
for longitudinal evaluation. Here, we present a unique technology that exploiting the

mechanistic action of proteasome inhibition in synergy with label-free protein-structure
specificity of mid-infrared optoacoustic microscopy, facilitates longitudinal evaluation of
myeloma treatment exploring patients’ heterogeneous response. Specifically, we use
intermolecular β-sheet formation as an endogenous biomarker for cell viability during
proteasome inhibition therapy. Aiming to promote personalized medicine in myeloma
therapy, detection of intermolecular β-sheet structure was applied to assess drug-treatment
performance in myeloma patients.
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Figure 1. Introduction.
a) Abnormal plasma cells caused multiple
myeloma.* b) LEN/BTZ therapy generates
accumulation of misfolded proteins in myeloma
cells. c) Misfolded proteins are rich of
intermolecular β-sheet structures detectable in the
amide I mid-infrared spectra.
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