

Curriculum on Optical Imaging I

Optical Imaging

Jorge Ripoll Department of Bioengineering Universidad Carlos III, Madrid, Spain

During this first part we will try to explain:

The Basics: Energy Conservation

This interaction can have many forms, as many as different forms of energy exist (thermal, electrical, chemical, electromagnetic, kinetic, magnetic, mechanical, nuclear or any combination). What <u>always</u> must hold true is:

Total Input Energy = Total Energy Absorbed by Object + Total Output Energy

PRIMA IV-Dublin, J.Ripoll 2012

Light Interaction

Characteristic Sizes

PRIMA IV-Dublin, J.Ripoll 2012

Optical Properties depend on the collective properties:

Depending on the levels (orbitals) accessible, this extra energy can be given back to the system either as **nonradiative** or **radiative** emission. It is the radiative emission we're interested in right now.

PRIMA IV-Dublin, J.Ripoll 2012

Light Scattering

PRIMA IV–Dublin, J.Ripoll2012

Interaction with a single particle

Quantifying scattering Scattered Radiation Incident Radiation

Particle How much energy is scattered by the particle?

PRIMA IV-Dublin, J.Ripoll 2012

PRIMA IV-Dublin, J.Ripoll 2012

Statistical Description of Optical Properties

 $\mu_s = \rho \sigma_{sc},$

In the case where we have a collection of these particles at a certain density, the amount of scattering will depend on the density of particles.

Scattering Coefficient

$$\left(cm^{-1} \right)$$

Scattering

• We have seen that each wavelength is scattered at a different angle:

	Scattering
•	So what happens if we have a random collection of these?:
	So, even though each particle may be transparent on its own, an ensemble of these will randomize light's angular distribution mixing all colors in all directions: <i>diffuse white light</i>

PRIMA IV-Dublin, J.Ripoll 2012

Milk Experiment

How does scattering affect light propagation?

PRIMA IV-Dublin, J.Ripoll 2012

PRIMA IV-Dublin, J.Ripoll 2012

PRIMA IV-Dublin, J.Ripoll 2012

Milk Experiment

PRIMA IV–Dublin, J.Ripoll2012

Milk Experiment

Using different proportions of milk for the same volume (1cm high): 3 cups milk 2 cups milk 2 cup milk 2 cup water

PRIMA IV-Dublin, J.Ripoll 2012

Analysis

PRIMA IV-Dublin, J.Ripoll 2012

Analysis: 100% Milk

PRIMA IV-Dublin, J.Ripoll 2012

Scattering

PRIMA IV-Dublin, J.Ripoll 2012

Analysis

Scattering

PRIMA IV-Dublin, J.Ripoll 2012

Boiling an egg

AA & JR 2005

MA IV–Dublin, J.Ripoll 201

Light Absorption

PRIMA IV-Dublin, J.Ripoll 2012

d pigments are among the most widespread of. them from their diet. The yellow color of butter e yellowness of an egg yolk depends on the her eans it eats. The crustaceans, in turn, obtain th eir diet. they'll hose their nink color and fade to een eating; the in the crustare pigmer

PRIMA IV-Dublin, J.Ripoll 2012

Light Absorption

(adding light)

Substractive Primaries (adding absorption)

PRIMA IV-Dublin, J.Ripoll 2012

Quantifying Absorption:

Statistical Description of Optical **Properties**

In the case where we have a collection of these particles at a certain density, the amount absorption will depend on the density of particles.

Absorption Coefficient

$$\mu_a = \rho \sigma_a. \qquad \left(cm^{-1} \right)$$

PRIMA IV-Dublin, J.Ripoll 2012

Tissue Absorption

• Main Absorbers in Tissue:

- Blood
- Water
- Skin (melanin)

Absorption of Water

Effect of Skin

Statistical Description of optical properties

PRIMA IV-Dublin, J.Ripoll 2012

We can now characterize the optical properties

Optical Projection Tomography (OPT)

Slightly Scattering Tissues

Principles of OPT

Optical Projection Tomography as a Tool for 3D Microscopy and Cene Expression Studies Description of the State State State (State State St

J. Sharpe et al, Science **296** 2002

PRIMA IV-Dublin, J.Ripoll 2012

<image><image>

PRIMA IV-Dublin, J.Ripoll 2012

Radon Transform

Group / Contact Information

Bioengineering Department, University Carlos III, Madrid, Spain<u>http://biig.uc3m.es/index.php/en</u> Gregorio Marañon Hospital, Madrid, Spain

Email: jorge.ripoll@uc3m.es

PRIMA IV-Dublin, J.Ripoll 2012

Assessment of stroke-induced immune depression

Protocol

 \triangle

FMT "Fluorescence Molecular Tomography-Optical Imaging

 \triangle

 \triangle

Stroke

A. Martin, J. Aguirre, Mol. Img. (2008)

Universidad Carlos III de Madrid www.achmes

Δ

PRIMA IV-Dublin, J.Ripoll 2012

Universidad Carlos III de Madrid www.uc.hmes

LM

 \square

Blood samples

FACS "Fluorescence Analizer Cell Sorter".

-Spleen -lymph nodes -Thymus

PRIMA IV-Dublin, J.Ripoll 2012

Stroke-induced immune depression

A. Martin, J. Aguirre, et al, Mol. Imag (2008)

PRIMA IV-Dublin, J.Ripoll 2012

ŧΜ

Hybrid Systems

Prince Pr

 Imaging of artherosclerotic plaques in mice

 Nahrendorf, et al, Artherosclerosis,
 PRIMA IV-Dublic, J.Ripolit2022

Fig. 1. Experimental setup. (a) Schematic of the FMT/MRI instrumentation. (b) Side view of the sample platform. (c) Bottom view of the detector PCB. (d) Stetch of the SPAD architecture.

PRIMA IV-Dublin, J.Ripoll 2012

High scattering samples

EXAMPLES

PRIMA IV-Dublin, J.Ripoll 2012

History of FMT

- Evolved from Diffuse Optical Tomography (DOT), in fluorescence mode also termed f-DOT developed by A. Yodh, B. Chance, B. Pogue, S. Arridge, J. Schotland, amongst others during the 90's.
- Developed by *V. Ntziachristos* in the context of Molecular Imaging as FMT in 2002.

PRIMA IV-Dublin, J.Ripoll 2012

Fluorescence Molecular Tomography (FMT)

- Account for Scattering using appropriate model
- In low scattering conditions: *ballistic propagation* (OPT, SPIM) and traditional microscopy
- In high scattering media: *diffusive propagation* (FMT)

Blood Absorption

AA & JR 2009

PRIMA IV–Dublin, J.Ripoll 2012

Light Sheet Techniques

Resolution of Ultramicroscopy and Field of View Analysis ^{Ultich} Leichner^{1,2}, Walter Zieglgänberger¹, Hans-Ultich Dodt^{1,3}

Light Sheet Techniques

Light Sheet Techniques

Thin-sheet laser imaging microscopy for optical sectioning of thick tissues

Peter A. Santi¹, Shane B. Johnson¹, Matthias Hillenbrand², Patrick Z. Grand Pre¹, Tiffany J. Glass¹, and James R. Leger³ ¹Department of Otolaryngology, University of Minnesota, Minneapolis, MN, USA, ²Iechnische Universitä, Ihnenau, Germany, and 'Electrical' and Computer Engineering, University of Minnesota, Minneapolis, MN, USA

BuTechniquer 46-287-294 (April 2009) doi 10.2144/000113087 Keywendo optical accounting: light-sheet imaging: S D reconstruction

Light Sheet Techniques

Some extra interesting stuff

The Green Flash

From "the nature of colors"

(lig

Huge Moons

Doesn't the moon look larger when close to the skyline (buildings, for example) than when its up in the sky? Its an optical illusion!

PRIMA IV-Dublin, J.Ripoll 2012

Scattering Anisotropy

sity distribution would look like for nes the wavelength of the incident length) with index of refraction 1.4

PRIMA IV-Dublin, J.Ripoll 2012

Scattering Anisotropy

This information on the average angular distribution of energy is provided by the Anisotropy Scattering Factor, g:

$$g = <\cos\theta > = \frac{\int_{S} |\langle \mathbf{S}^{(sc)} \rangle | \hat{\mathbf{s}} \cdot \hat{\mathbf{s}}_{0} \mathrm{d}S}{\int_{S} |\langle \mathbf{S}^{(sc)} \rangle | \mathrm{d}S}$$

Which is simply the averaged cosine of the scattered angle.

PRIMA IV-Dublin, J.Ripoll 2012

60 Z

out 451

PRIMA IV-Dublin, J.Ripoll 2012

Scattering Anisotropy

p roar plot of the scattering diagram or phase function for the Henyey-ein expression for anisotropy values of g = 0.1, g = 0.5 and g = 0.8. The ows in greater detail the difference for backscattering angles (note that light is from the left). Greenste inset sho

And what happens with light at the atmosphere?

Rayleigh scattering primarily occurs through light's interaction with air molecules Some of the scattering can also be from <u>aerosols</u> of sulfate particles

Scattering

Why does fabric (like your jeans for example) look darker when you spill water on them?

PRIMA IV-Dublin, J.Ripoll 2012

Sand Storm

So, multiple scattering (and absorption and high reflectivity for certain wavelengths) explain therefore the color of a sand storm:

Universidad Carlos III de Madrid www.achas

Light Emission

PRIMA IV-Dublin, J.Ripoll 2012

Water actually just gets rid of all the "hairness" in fabric. Therefore less light gets scattered and in contrast looks darker. Light can also penetrate deeper in fabric when wet, since less is lost on the way.

10⁻¹³ 10⁻¹² 10⁻¹¹ 10⁻¹⁰ 10⁻⁹ 10⁻⁸ 10⁻⁷ 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻⁵ 10⁻² 10⁻¹ 1 10⁴ (m)

PRIMA IV-Dublin, J.Ripoll 2012

PRIMA IV-Dublin, J.Ripoll 2012

16

Emission from a Dipole

Light Emission

So far we approximated how the atom/molecule will de-excite emitting radiative energy and how this de-excitation can be approximated to an oscillator with a specific dipole moment. Consider now a collection of these atoms/molecules...

PRIMA IV-Dublin, J.Ripoll 2012

Chemoluminescence

If the source of energy is *chemical*, we have *Chemoluminescence*:

In the specific case when this is produced by a *living organism* we have *Bioluminescence:*

PRIMA IV-Dublin, J.Ripoll 2012

Light Emission

Bioluminescence therefore explains

PRIMA IV–Dublin, J.Ripoll 2012

Fluorescence

In the case of *Fluorescence*, if the emission is from a *triplet state*, we have *Phosphorescence*:

PRIMA IV-Dublin, J.Ripoll 2012

Fluorescence

Thanks to the cloning of the GFP we have now a great number of fluorescent proteins to

Development of nerve cells. Each nerve cell expresses a combination of fluorescent proteins. Each one, needs to be visualized with its own filter.

Fluorescent Proteins from Tsien's lab:

Blood Absorption

Blood Absorption

Coherent Light Emission: The laser

But what happens is somehow the source of energy – once the system is in its excited state - is capable of somehow acting on the independent dipoles in a coherent way? This occurs under very special conditions, but specifically, when the incident radiation is capable of orienting and synchronizing the emission of the independent dipoles through Stimulated Emission: object

Under certain conditions, this light can be used to produce the stimulated emission of more excited dipoles, further amplifying the stimulated emission. This is the basis of **the laser** (Light Amplification through Stimulated Emission Radiation).

PRIMA IV-Dublin, J.Ripoll 2012

eflective mirror

Further Reading

- van de Hulst, H.C., "Light Scattering by Small Particles," Chapters 9 and 10, Wiley, New York, 1957.
 Born and Wolf, "Principles of Optics"
 Murphy, "The Color of Nature: An Exploratorium Book"
 Color in Nature: A Visual and Scientific Exploration by Penelope A. Farrant
 Color and Light in Nature by David K. Lynch and William Livingston
 The Physics and Chemistry of Color, by Kurt Nassau
 Living Lights, by E. N. Harvey