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During this first part we will try to explain: 
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The Basics: Energy Conservation 

Input Energy Absorbed 
Energy 

Output Energy 

This interaction can have many forms, as many as different 
forms of energy exist (thermal, electrical, chemical, electromagnetic, 

kinetic, magnetic, mechanical, nuclear or any combination) . What 
always must hold true is: 

Total Input Energy = Total Energy Absorbed by Object + 
Total Output Energy 

object 
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Light Interaction 

Absorbed 
Energy 

object 
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Input EM 
Energy (Radiative) 

Absorbed Electromagnetic 
Radiation 
(mainly non-Radiative) 
Transfer of energy as heat 

Scattered Electromagnetic 
Radiation 
(Radiative) 
Of the same frequency 
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We wish to use light to probe or image tissue 
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Characteristic Sizes 
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Optical Properties depend on the collective properties: 

Depending on the levels (orbitals) accessible, this extra energy can be given back to the system either as non-
radiative or radiative emission. It is the radiative emission we’re interested in right now. 

We managed to excite the 
electron to this higher energy 
level (in this case, a singlet state) 

It can then return to the ground 
state (state of minimum energy) 
either non-radiatively (heating 
up its environment, for example) 

Or radiatively, i.e. emitting EM 
radiation, as in Fluorescence or 
Phosphorescence.  

Jablonski Diagram 
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Light Scattering 
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Light Scattering 

PRIMA  IV– Dublin, J.Ripoll 2012 

Why does fabric look darker when wet? Q:Why does fabric look darker when wet? 
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Interaction with a single particle 
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Bubbles 

From “the Colors of Nature” 
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The Rainbow 

Color and Light in Nature by David K. Lynch and William Livingston 
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The Rainbow 

Color and Light in Nature by David K. Lynch and William Livingston 

Primary Rainbow 

Secondary Rainbow 

* Alexander of Aphrodisias (Lived and taught in Athens, 200AD) PRIMA  IV– Dublin, J.Ripoll 2012 

Quantifying scattering 

Particle 

Incident Radiation 

Scattered Radiation 

How much energy is scattered by the particle? 
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And the total scattered power then is: 

Particle 

Incident Radiation 

Scattered Radiation 

Total Scattered Power: 
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Statistical Description of Optical 
Properties 

In the case where we 
have a collection of 
these particles at a 
certain density, the 
amount of scattering 
will depend on the 
density of particles. 

Scattering Coefficient 

μs 

σs 
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Scattering 

• We have seen that each wavelength is 
scattered at a different angle: 
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Scattering 

• So what happens if we have a random 
collection of these?: 

We end up with a random distribution of angles 
for all visible wavelengths. 

So, even though each particle may be transparent on its own, an ensemble of these will 
randomize light’s angular distribution mixing all colors in all directions: diffuse white light 
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Milk Experiment 

How does scattering affect light propagation? 
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Material 
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Milk Experiment 
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Milk Experiment 

Using different proportions of milk for the 
same volume (1cm high): 

3 cups milk 1 cup milk 
2 cup water 

2 cups milk 
1 cup water 

100% Milk 66% Milk 33% Milk We’re effectively changing 
the density of scatterers 
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Milk Experiment 

100% Milk 66% Milk 33% Milk 

For 1cm depth: 
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Analysis 
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Analysis 
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Analysis: 100% Milk 
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A second example 

Yoghourt 

Laser Pointer 

water 
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Scattering 

1 Drop 

4 Drops 

8 Drops 

12 Drops 
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Scattering 

Ballistic Propagation Highly Scattering 

Beer´s Law ~ exp (-a*z) Diffusion ~ exp (-a*r)/r 
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The Egg… from ballistic to multiple 
scattering 
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Boiling an egg 

AA & JR 2009 
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Other stuff that multiply scatters light 

Sugar 
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Mayonnaise 
And the best part: Fat from a nice slice of jamón serrano 

Flour 
Toothpaste 

The “ouzo effect” 
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Why does fabric (like your jeans for example) look darker when you spill water on them? 

Answer: Water actually just gets rid of all the 
“hairiness” in fabric. Therefore less light gets 
scattered and in contrast looks darker. Light can 
also penetrate deeper in fabric when wet, since 
less is lost on the way. 

Q:Why does fabric look darker when wet? 
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Light Absorption 
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Colors 

Flamingos are pink because their feathers contain carotenoids, pigments that are responsible for many of the reds, oranges, 
golds, and yellows of plants and animals. Though carotenoid pigments are among the most widespread of animal pigments, 
animals can’t synthesize these compounds but must obtain them from their diet. The yellow color of butter, which comes from 
a carotenoid, depends on what the cow has been eating; the yellowness of an egg yolk depends on the hen’s diet. The pink of 
the flamingo’s feathers comes from pigments in the crustaceans it eats. The crustaceans, in turn, obtain their pigment from 
algae. If captive flamingos don’t get sufficient pigment in their diet, they’ll lose their pink color and fade to white. From “The 
Colors of Nature”. 
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Light Absorption 

Additive Primaries 
(adding light) 

Substractive Primaries 
(adding absorption) 
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Quantifying Absorption: 

Particle 

Incident Radiation 

Scattered Radiation 

Total Absorbed Power: 
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Statistical Description of Optical 
Properties 

In the case where we 
have a collection of 
these particles at a 
certain density, the 
amount absorption 
will depend on the 
density of particles. 

Absorption Coefficient 
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Tissue Absorption 

• Main Absorbers in Tissue: 

– Blood 

– Water 

– Skin (melanin) 
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Blood Absorption 
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Absorption of Water 
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Effect of Skin 

melanosomes 
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Statistical Description of optical properties 

a1 s1 

a2 s2 
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We can now characterize the optical 
properties 

a1, s1, g1 
(a1 << s1) 

a2, s2, g2 
(a2>> a1) 

a, s, g 
(a<< s) 

a, s, g 
(a<< s) 

Remember this is a statistical 
description 
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Optical Projection Tomography 
(OPT) 

Slightly Scattering Tissues 
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J. Sharpe et al, Science 296 
2002 

Principles of OPT 
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OPT Setup 
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Radon Transform 
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OPT Reconstruction 
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OPT 
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In-vivo C. elegans 
ALMR 

ALML 

AVM 

A 

Merging the raw data of fluorescent and white light 
images combines the visualization of anatomical features 
and fluorescent expression patterns (A).  

Green = touch sensitivity neurons :: GFP 

M. Rieckher et al, PlosOne (2011) 
Dopamine neurons expressing GFP 
M. Rieckher et al, PlosOne (2011) 
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In-vivo D. melanogaster 

3D Time-lapse Imaging of D. melanogaster development = ~500 OPT datasets 
CUDA Implementation: Dong Di and Shouping Zhu. Specimen: S. Oehler and B. Savakis (Fleming) PRIMA  IV– Dublin, J.Ripoll 2012 
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Assessment of stroke-induced  
immune depression  

Dimitris Kioussis 
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0day 1day 2days 4days 7days 

FACS "Fluorescence Analizer Cell Sorter".  

Blood samples 

-Spleen 

-lymph 
nodes 
-Thymus 

FMT “Fluorescence Molecular 
Tomography-Optical Imaging 

Stroke 

Protocol 
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Stroke-induced immune depression  

control sham ischemia
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Hybrid Systems 
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FMT-XCT 

Imaging of artherosclerotic plaques in mice 

Nahrendorf, et al, Artherosclerosis, 
Thrombosis and Vascular Biology (2009) 
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FMT-XCT 
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FMT-MRI 

Stuker et al, IEEE Trans. Med. 
In press(2011) 
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High scattering samples 

EXAMPLES 
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Fluorescence Molecular Tomography (FMT) 

High Scattering Tissues 
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History of FMT 
• Evolved from Diffuse Optical Tomography (DOT), in fluorescence 

mode also termed f-DOT developed by A. Yodh, B. Chance, B. 
Pogue, S. Arridge, J. Schotland, amongst others during the 90’s.  

• Developed by V. Ntziachristos in the context of Molecular 
Imaging as FMT in 2002. 
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FMT Setup at FORTH & ETH 
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FMT Data: J. Aguirre, A. Martin (FORTH) 
GFP Mouse: C. Mamalaki (FORTH) and D. Kioussis (MRC)  

Raw Data – GFP exc/emm 

PRIMA  IV– Dublin, J.Ripoll 2012 
A. Martin, J. Aguirre, Mol. Img. (2008) 
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In Summary 

• Account for Scattering using appropriate model 

• In low scattering conditions: ballistic propagation 
(OPT, SPIM) and traditional microscopy 

• In high scattering media: diffusive propagation 
(FMT) 

What about in 
between? 

PRIMA  IV– Dublin, J.Ripoll 2012 
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Blood Absorption 

AA & JR 2009 
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Throughout this part you might have noticed that all values presented 
deal with the main absorbers present in tissue, but the average 

absorption properties of tissue itself have not been presented. As a 
matter of fact, even though we do know the absorption spectra of most 
components present in tissue, each tissue/organ has a completely 

dierent combination of these absorbers not only from subject to subject, 
but within the same subject if measured at dierent times. Placing this 
into context, the total absorption due to blood will depend on the total 

blood volume present (which we do not know), and on its oxygenation 
state (which we do not know either). We might `assume' some 
parameters as an indication (i.e. we do know what organs contain more 

blood), but the truth of the matter is that we do not know optical 
properties of whole tissue a priori, even if we might know their 
anatomical distribution. Fitting for the actual in-vivo values is still a 

matter of research, and a quick search through the literature reveals 
huge discrepancies between the assigned values. 
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Light Sheet Techniques 
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Light Sheet Techniques 
OPFOS 

Gineapig cochlea 
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Light Sheet Techniques 
TSLIM 

Mouse cochlea PRIMA  IV– Dublin, J.Ripoll 2012 

Light Sheet Techniques 

Nature Methods 
2010 

DSLM-SI 
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Light Sheet Techniques 
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Some extra interesting stuff 
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The Green Flash 

From “the nature of colors” 
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Huge Moons 
Doesn’t the moon look 
larger when close to the 
skyline (buildings, for 
example) than when its up 
in the sky? Its an optical 
illusion! 
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Scattering Anisotropy 

We have so far derived two main properties of the 
particle which give magnitudes related to how much 
energy is scattered and how much is absorbed. 
However, we have no information on how this 
energy is scattered, i.e. if there is a preferential 
direction of scattering 
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Scattering Anisotropy 

 This information on the average angular distribution of energy is provided 
by the Anisotropy Scattering Factor, g: 

Which is simply the averaged cosine of the scattered angle. 
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Scattering Anisotropy 
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Blue Sky 

EARTH 

Atmosphere 

If you look this way,  
Light travels through less atmosphere 
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And what happens with light at the atmosphere? 

Rayleigh scattering primarily occurs through light's interaction with air molecules. 
Some of the scattering can also be from aerosols of sulfate particles  
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Fog 

AA & JR 2009 

AA & JR 2009 

AA & JR 2009 

Scattering 
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Sand Storm 
So, multiple scattering (and absorption and high reflectivity for certain 
wavelengths) explain therefore the color of a sand storm: 
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Why does fabric (like your jeans for example) look darker when you spill water on them? 

Water actually just gets rid of all the 
“hairiness” in fabric. Therefore less light 
gets scattered and in contrast looks 
darker. Light can also penetrate deeper 
in fabric when wet, since less is lost on 
the way. 
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Light Emission 
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Radiative Energy Spectrum 

Autoradiography, 
SPECT, PET CT, X-ray 

MRI 

Optical 

http://en.wikipedia.org/wiki/Aerosol
http://www.mi-central.org/index.html
http://www.crump.ucla.edu/
http://www.mgh-cmir.org/
http://www.mi-central.org/index.html
http://www.crump.ucla.edu/
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Light Emission 
Imagine the evolution of the excited state to the ground state as a damped spring: 
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The frequency of this oscillation only depends on the difference between energy levels, and 
as shown before it is given by Plank’s relation: 
 

 = Eemission /h 
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Emission from a Dipole 

p 

p 
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Light Emission 
So far we approximated how the atom/molecule will de-excite emitting radiative energy 
and how this de-excitation can be approximated to an oscillator with a specific dipole 
moment. Consider now a collection of these atoms/molecules… 

p1 

p2 p3 

p4 

pi 

p6 

… 

p5 

Light Emitted from this 
collection of randomly-oriented 
dipoles will be incoherent 
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Chemoluminescence 

CHEMICAL 
REACTION 

Absorbed 
Energy 

Electromagnetic (EM) 
Radiation  
(Radiative) 

object 

If the source of energy is chemical, we have Chemoluminescence: 

In the specific case when this is produced by a living organism we have 
Bioluminescence: 
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Light Emission 
Bioluminescence therefore explains: 

Photinus pyralis 
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Fluorescence 
In the case of Fluorescence, if the emission is from a triplet state, we have 
Phosphorescence: 

Phosphorescence is 
persistent fluorescence since 
the T1 –S0 is (in principle) 
prohibited and is possible 
due to spin-orbit coupling. 
Due to this reason, 
Fluorescence life-times are 
in the order of nanoseconds, 
whereas Phosphorescence 
life-times can be in the 
order of seconds or even 
more.  
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Fluorescence 
Fluorescence, is capable of explaining: 

Green Fluorescent Protein (GFP) -
expressing cells 

GFP-expressing mice 

And here is the culprit: 

Aequorea victoria 

Important note: In order to see 
Fluorescence, we need a filter to “remove” 

the excitation light. 
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Fluorescence 
Thanks to the cloning of the GFP we have now a great number of fluorescent proteins to 

choose from: 

Development of nerve cells. Each 
nerve cell expresses a combination of 
fluorescent proteins. Each one, needs 
to be visualized with its own filter. 

Fluorescent Proteins from Tsien’s lab: 
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Blood Absorption 

GFP  
Absorption 

GFP  
Emission 
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Blood Absorption 

Wavelength (nm) 
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TurboFP635 excitation/emission spectra 

Excitation 

Emission 
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Coherent Light Emission: The laser 
But what happens is somehow the source of energy – once the system is in its 
excited state - is capable of somehow acting on the independent dipoles in a 
coherent way? This occurs under very special conditions, but specifically, when the 
incident radiation is capable of orienting and synchronizing the emission of the 
independent dipoles through Stimulated Emission: 

Collection 
of Excited 
Molecules 

Emission of Electromagnetic (EM) 
Radiation  
(Radiative) 
Of the same frequency 

object 

p1 
p2 p3 

p4 

pi 

p6 

… 

p5 

All emitted light is coherent: 
i.e. it has been emitted both 
at the same time, and with 
the same dipolar 
orientation. Of course, 
always following 
Heisenberg’s uncertainty 
principle 

Incident Electromagnetic (EM) 
Radiation  
(Radiative) 

Under certain conditions, this light can be used to produce the stimulated emission of 
more excited dipoles, further amplifying the stimulated emission. This is the basis of 
the laser (Light Amplification through Stimulated Emission Radiation). 
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Light Emission 

But don’t forget! The Laser needs 
enough atoms/molecules in their 
excited state in order for it to work. 
And how are atoms excited 
(population inversion its termed – see 
Fig. 2)? Exactly as we have seen in the 
previous slides: either through 
thermal energy, electromagnetic 
energy or chemical energy, mainly. 
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• van de Hulst, H.C., “Light Scattering by Small Particles,” Chapters 9 and 10, 
Wiley, New York, 1957.  

• Born and Wolf, “Principles of Optics” 

• P. Murphy, “The Color of Nature: An Exploratorium Book” 

• Color in Nature: A Visual and Scientific Exploration by Penelope A. Farrant 

• Color and Light in Nature by David K. Lynch and William Livingston  

• The Physics and Chemistry of Color, by Kurt Nassau  

• Living Lights, by E. N. Harvey 


