WMIC 2012

Introduction to molecular contrast agents: atherosclerosis

Klaas Nicolay Eindhoven University of Technology

Biomedical NMR

Educational: Cardiovascular TU/e

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Potential molecular imaging targets in atherosclerosis

Outline of the talk

- Choice of contrast agent and imaging modality
- Examples of molecular and cellular imaging in atherosclerosis
- Use in therapy guidance and evaluation
- Concluding remarks

Design considerations of contrast materials

- The imaging target:
 - Type
 - Location
 - Abundance
- · Characteristics of the imaging modality of choice

Some examples

Receptors on vascular endothelium:

- Present in low concentrations in early phase of atherosclerosis
- Expressed in thin endothelial cell layer

• Targeted nanoparticles are attractive in this setting:

- High contrast agent payload
- Mainly restricted to vascular compartment, slowly permeating into plaque
- Employed by all major imaging modalities (often in multimodality fashion)

Some examples

- Structural components of the extracellular matrix (*e.g.*, elastin, collagen):
 - Abundant target
 - Often densely packed
- Low-molecular weight agents are typically preferred:
 - Effective interaction with target
- Unless one aims at probing ECM disorganization during remodeling
- In that case, nanoparticles may be preferred

Some examples

- Metabolic status of the plaque:
 - · Inflammation is associated with elevated glucose use
 - Probed with closely related glucose analogue (¹⁸F-deoxyglucose for PET)

Molecular structure of typical targeted contrast agents

- Ligand for target recognition:
 - Antibody
 - Peptide, peptidomimetic
 - Aptamer, etc

• Imaging signal generating moiety:

- Direct detection:
 - Positron emitter (PET)
 - Gamma emitter (SPECT)
 - Stable cavitation (ultrasound)
 - Fluorescent emission (optical imaging)
- Indirect detection:
 - Gd-chelate (MRI)
 - FeO nanoparticle (MRI)

Choice of imaging modality

- Sensitivity for contrast agent detection
- Spatial resolution
- Scan time
- **Versatility** (*e.g.*, can it also provide anatomical, structural and/or functional information)
- **Translatability** (from mouse to man?)
- **Practicalities** (*e.g.*, cost, availability, radiation dose)

Targets for molecular imaging of atherosclerosis

- Endothelial cell activation
- Macrophage activity
- Oxidative stress
- Proteinases
- Extracellular matrix
- Thrombus
- Therapeutic interventions

Nanoparticles for molecular and cellular MRI

Adhesion molecule-targeted MPIO in apo-E^{-/-} mouse

McAteer et al., Atheroslerosis 209: 18-27, 2010

Contrast-enhanced ultrasound of endothelial markers

Inaba et al., Transl Res **159**: 140-148, 2012 Nico de Jong et al., EMC, Rotterdam

Contrast-enhanced ultrasound of endothelial markers

Inaba et al., Transl Res **159**: 140-148, 2012 Nico de Jong et al., EMC, Rotterdam

Contrast-enhanced ultrasound of VCAM-1 expression

Inaba et al., Transl Res 159: 140-148, 2012

USPIO-enhanced MRI of drug therapy in apo-E -/- mice

Sigovan et al., Invest Radiol 47: 546-552, 2012

USPIO-enhanced MRI of drug therapy in apo-E -/- mice

Sigovan et al., Invest Radiol 47: 546-552, 2012

Lipid-based nano-structures for molecular MRI

Mulder et al., Acc Chem Res **42**: 904-914, 2009 Agrawal et al., Adv Drug Deliv Rev **62**: 42-58, 2010

<text>

Mulder et al., Magn Reson Med 58: 1164-1170, 2007

Myeloperoxidase-targeted imaging of inflammation

- The CA radicalizes in the presence of myeloperoxidase and forms oligomers, which can also bind to proteins
- This leads to improved detection sensitivity and prolonged retention
- Single enzyme can "activate" many CA molecules

MPO in atherosclerotic plaques in rabbit model

Ronald et al., Circulation 120: 592-599, 2009

MPO targeted MRI of plaques in rabbit model: Gd-DTPA *versus* Gd-containing MPO probe

Ronald et al., Circulation 120: 592-599, 2009

MPO targeted MRI of plaques in rabbit model: correlation between MRI and immunohistochemistry

Ronald et al., Circulation 120: 592-599, 2009

¹⁸FDG-PET/CT in apo-E -/- mouse

ApoE^{-/-} mouse

carotid cast

[¹⁸F]FDG PET/CT

Courtesy of Michael Schäfers et al., Münster

PET imaging of MMP activity in apo-E -/- mouse

Hermann et al., J Nucl Cardiol 19: 609-617, 2012

Nahrendorf et al., Circ Cardiovasc Imaging 2: 56-70, 2009

FMT/CT of protease activity

PS-40: 40 nm, 2000 kDa

Nahrendorf et al., ATVB 29: 1444-1451, 2009

Protease sensing: FMT/CT of atorvastatin treatment

Nahrendorf et al., ATVB 29: 1444-1451, 2009

High-resolution MRI of mouse vascular anatomy

Rik Moonen et al., TU/e

Paramagnetic, elastin-specific probe

Makowski et al., Nature Med 17: 383-388, 2011

Elastin-specific MRI in Apo-E^{-/-} mouse

Makowski et al., Nature Med **17**: 383-388, 2011 Von Bary et al., Circ Cardiovasc Imaging **4**: 147-155, 2011

Elastin-specific MRI in Apo-E^{-/-} mouse

Makowski et al., Nature Med **17**: 383-388, 2011 Von Bary et al., Circ Cardiovasc Imaging **4**: 147-155, 2011

Elastin-enhanced aortic MRI in pig model

Makowski et al., Invest Radiol 47: 438-444, 2012

Elastin-enhanced aortic MRI in pig model

Makowski et al., Invest Radiol 47: 438-444, 2012

Apo-E knock-out mouse with carotid artery cast

Van Bochove et al., MAGMA **23**: 77-84, 2010 Van Bochove et al., CMMI **6**: 35-45, 2011 Kuhlmann et al., JoVE, 2012

Paramagnetic, collagen-targeted micelles

Sanders et al., Contrast Media Mol Imaging 4: 81-88, 2009 Straathof et al., Methods Mol Biol 771: 691-715, 2011 Van Bochove et al., Eur J Inorg Chem, 2012

Collagen imaging, using CNA-35 micelles

Fibrin-specific ligand for targeted imaging

In vivo SPECT/CT imaging with fibrin peptide in mouse carotid artery thrombus model

Luc Starmans et al., submitted

Ex vivo quantification of fibrin peptide @ 3 hrs post-injection

Luc Starmans et al., submitted

Clinical translation: Gd-containing fibrin agent

First-in-man MRI-based fibrin imaging post-contrast *T*₁-weighted MRI

EP-2104R, a fibrin-specific agent Spuentrup et al., Eur Radiol 18: 1995-2005, 2008

Clinical translation: Gd-containing fibrin agent

First-in-man MRI-based fibrin imaging

Spuentrup et al., Eur Radiol 18: 1995-2005, 2008

Plaque progression and therapeutic options

Quillard and Libby, Circulation Res 111: 231-244, 2012

Mark Lobatto et al., Mol Pharmaceutics 7: 2020-2029, 2010

MRI of steroid-loaded paramagnetic liposomes

before injection

Mark Lobatto et al., Mol Pharmaceutics 7: 2020-2029, 2010

injection

Monitoring anti-inflammatory therapy with ¹⁸FDG-PET

Mark Lobatto et al., Mol Pharmaceutics 7: 2020-2029, 2010

Successful molecular imaging of atherosclerosis

Leuschner et al., Circulation Res 108: 593-606, 2011

Impact of molecular imaging in development of therapeutic and diagnostic tools

Quillard and Libby, Circulation Res 111: 231-244, 2012

Acknowledgements of MI collaborators

TU/e Luc Burnsveld Maarten Merkx Bert Meijer

Erasmus University Rotterdam Dirk Duncker Nico de Jong

University of Torino Silvio Aime Enzo Terreno

University of Twente Gert Storm Michel Versluis

Utrecht University Twan Lammers Raymond Schiffelers

Philips Research Holger Grüll Marc Robillard Mount Sinai, New York David Cormode Zahi Fayad Ahmed Klink Willem Mulder Esad Vucic

AMC, Amsterdam Mat Daemen Yigal Pinto

Maastricht University Chris Reutelingsperger

Leiden UMC Brigit den Adel Erik Kaijzel Clemens Löwik Rob Poelmann

Louise van der Weerd

SyMO-Chem Henk Janssen Henk Keizer **Bruker BioSpin** Wulf-Ingo Jung Arno Nauerth

University of Münster Michael Kuhlman Michael Schäfers Lars Stegger

University of Bonn Bernd Fleischmann Willy Roell

Imperial College London Rob Krams

UMC Utrecht Wilbert Bartels Willem Mali Chrit Moonen Gerard Pasterkamp

Vienna University Franz Gabor

Acknowledgements: Biomedical NMR @ TU/e

Group members

Desirée Abdurrachim **Ot Bakermans** Bernard te Boekhorst Sander van Duijnhoven Martiin Froeling Tessa Geelen Larry de Graaf Wolter de Graaf Floortje de Groot Holger Grüll Jo Habets **Stefanie Hectors** Nicole Hiinen Igor Jacobs Sharon Janssens **Richard Jonkers Esther Kneepkens**

Abdallah Mohamed **Rik Moonen** Tiemen van Mourik Miranda Nabben Bastiaan van Nierop Léonie Niesen Léonie Paulis Jeanine Prompers **Pedro Sanches Tom Schreurs** Mariska de Smet Luc Starmans **Gustav Strijkers David Veraart Bart Wessels** Chu Wong Sin Yuin Yeo

Master students

Wouter Diik Robbert van Gorkum Nicole Haazen Arjan Hendriks Jean-Paul Kleiinen Mariët Koopman Marloes Marteijn Jules Nelissen Tom Peeters **Tim Schakel Tom Schreurs** Jolanda Spijkerman **Bjorn Stemkens** Sophie Peereboom Pieternel van der Tol Siem Wouters

Publications Klaas Nicolay "Introduction to Molecular Contrast Agents and New Devices - Atherosclerosis"

1. Quillard T, Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circ Res 111: 231-244, 2012

2. Leuschner F, Nahrendorf M. Molecular imaging of coronary atherosclerosis and myocardial infarction: considerations for the bench and perspectives for the clinic. Circ Res 108: 593-606, 2011

3. Mulder WJ, Strijkers GJ, van Tilborg GA, Cormode DP, Fayad ZA, Nicolay K. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Acc Chem Res 42: 904-914, 2009